Свопинг. Сегментно-страничная память. Свопинг и виртуальная память Методы повышения пропускной способности оперативной памяти

Подкачка , или своппинг (swapping - обмен), - это процесс выгрузки редко используемых областей виртуального адресного пространства программы и/или всей программы на диск или другое устройство внешней памяти. Такая внешняя память всегда намного дешевле оперативной памяти, хотя и намного медленнее.

При разработке системы всегда есть желание сделать память как можно быстрее. С другой стороны, потребности в памяти очень велики и постоянно растут. Современные персональные системы имеют около 150 Гбайт дисковой памяти, и этого часто оказывается недостаточно, особенно если идет работа с мультимедиа или просто с высококачественными изображениями.

Очевидно, что система с 150 Гб статического ОЗУ будет иметь стоимость, скажем так, совершенно не персональную, не говоря уже о габаритах, потребляемой мощности и прочем. К счастью, далеко не все, что хранится в памяти системы, используется одновременно. В каждый заданный момент исполняется только часть программного обеспечения, и оно работает только с частью данных.

Статистика утверждает, что в пределах одной программы 90% времени исполняется код, который занимает 10% места, а остальные 90% кода исполняются только 10% времени. Для данных разница в частоте использования, по-видимому, не столь резкая, но также существует

Еще одним фактором использования памяти является наличие операций ввода-вывода в программе. На рисунке 2.16 показан график зависимости коэффициента загрузки процессора в зависимости от числа одновременно выполняемых процессов и доли времени, проводимого этими процессами в состоянии ожидания ввода-вывода.

Рис. 2.16. Зависимость загрузки процессора от числа задач и интенсивности ввода-вывода

Из рисунка видно, что для загрузки процессора на 90% достаточно всего трех счетных задач. Однако для того, чтобы обеспечить такую же загрузку интерактивными задачами, выполняющими интенсивный ввод-вывод, потребуются десятки таких задач. Необходимым условием для выполнения задачи является загрузка ее в оперативную память, объем которой ограничен. В этих условиях и используется свопинг. При свопинге некоторые процессы (обычно находящиеся в состоянии ожидания) временно выгружаются на диск. Планировщик операционной системы не исключает их из своего рассмотрения, и при наступлении условий активизации некоторого процесса, находящегося в области свопинга на диске, этот процесс перемещается в оперативную память. Если свободного места в оперативной памяти не хватает, то выгружается другой процесс.

При свопинге, в отличие от рассмотренных ранее методов реализации виртуальной памяти, процесс может перемещаться между памятью и диском целиком, то есть в течение некоторого времени процесс может полностью отсутствовать в оперативной памяти. Существуют различные алгоритмы выбора процессов на загрузку и выгрузку, а также различные способы выделения оперативной и дисковой памяти загружаемому процессу.


Экспериментальные исследования показывают любопытный факт: реальная производительность системы довольно слабо зависит от применяемого алгоритма поиска жертвы. Статистика исполнения реальных программ говорит о том, что каждая программа имеет некоторый набор страниц, называемый рабочим множеством , который ей в данный момент действительно нужен. Размер такого набора сильно зависит от алгоритма программы, он изменяется на различных этапах исполнения и т.д., но в большинство моментов мы можем довольно точно указать его. Если все страницы рабочего набора попадают в память, то частота ошибок отсутствия страницы резко снижается. В случае, когда памяти не хватает, программе почти на каждой команде требуется новая страница, и производительность системы катастрофически - в тысячи раз - падает. В случае машин типа IBM PC x86 с дисковым контроллером IDE , в которых процессор задействуется при операциях с диском, это может привести, практически, к блокировке системы. Это состояние по-английски называется overswap или thrashing - чрезмерный своппинг и является крайне нежелательным.

В системах коллективного пользования размер памяти часто выбирают так, чтобы система балансировала где-то между состоянием, когда все программы держат свое рабочее множество в ОЗУ, и оверсвопом. Точное положение точки балансировки определяется в зависимости от соотношения скорости процессора со скоростью обмена с диском и с потребностями прикладных программ. Во многих старых учебниках рекомендуется подбирать объем памяти так, чтобы канал дискового обмена был загружен на 50%

Еще одно, немного устаревшее, эмпирическое правило приводится в документации фирмы Amdahl: сбалансированная система должна иметь по мегабайту памяти на каждый MIPS (Million of Instructions Per Second - миллион операций в секунду) производительности центрального процессора. Если система не использует память, определенную по этой формуле, есть основания считать, что процессор также работает с недогрузкой. Иными словами, это означает, что вы купили слишком мощный для ваших целей процессор и заплатили лишние деньги.

Это правило было выработано на основе опыта эксплуатации больших компьютеров, в основном на задачах управления базами данных. Скорость дисковой подсистемы в этих машинах была примерно сравнима с дисковыми контроллерами современных персоналок, поэтому аналогичный критерий оценки применим и к ПК, особенно работающим под управлением систем с виртуальной памятью - OS/2 , Windows NT и системами семейства Unix .

Объем оперативной памяти, который имеется в компьютере, существенно сказывается на протекании вычислительного процесса. Он ограничивает число одновременно выполняющихся программ и размеры их виртуальных адресных пространств.

Если все задачи мультипрограммной смеси являются вычислительными (мало операций ввода-вывода), для хорошей загрузки процессора может оказаться достаточным всего 3-5 задач.

Если вычислительная система загружена выполнением интерактивных задач, дляэффективного использования процессора может потребоваться уже несколько десятков, а то и сотен задач.



Большое количество задач требует больших объемов оперативной памяти.

В условиях, когда для обеспечения приемлемого уровня мультипрограммирования имеющейся памяти оказывается недостаточно, был предложен метод организации вычислительного процесса, при котором образы некоторых процессов целиком или частично временно выгружаются на диск.

В мультипрограммном режиме помимо активного процесса, имеются также приостановленные процессы, ожидающие завершения ввода-вывода или освобождения ресурсов, а также процессы в состоянии готовности, стоя­щие в очереди к процессору.

Образы таких неактивных процессов могут быть временно, до следующего цикла активности, выгружены на диск. Несмотря на это, ОС «знает» о существовании процессов и учитывает это при распределении процессорного времени и других ресурсов. К моменту, когда подходит очередь выполнения выгруженного процесса, его образ возвращается с диска в оперативную память. Если при этом оказывается, что свободного места в оперативной памяти не хватает, то на диск выгружается другой процесс.

Такая подмена (виртуализация ) оперативной памяти дисковой позволяет повысить уровень мультипрограммирования.

Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он, в действительности, не обладает.

Ясно, что работа виртуальной оперативной памяти происходит медленнее, чем реальной.

Виртуализация оперативной памяти осуществляется совокупностью программных модулей ОС и аппаратных схем процессора и включает решение следующих задач:

· размещение данных в запоминающих устройствах различного типа;

· выбор образов процессов или их частей для перемещения из оперативной па­мяти на диск и обратно;

· перемещение по мере необходимости данных между памятью и диском;

· преобразование виртуальных адресов в физические.

Заметим, что с проблемой размещения в оперативной памяти программ, которые превышают ее размеры, программисты столкнулись достаточно давно. Одним из решений было разбиение программы на части, которые назывались оверлеями . Когда один оверлей заканчивал свое выполнение, он вызывал другой оверлей. Все оверлеи хранились на диске и перемещались между памятью и диском средствами ОС на основании директив программиста, содержащихся в программе.

Несмотря на внешнее сходство, имеет принципиальное отличие от виртуальной памяти. Оно состоит в том, что при оверлее разбиение программы на части и планирование их загрузки в оперативную память выполняются программистом заранее во время написания программы.

Виртуализация памяти может быть осуществлена на основе двух различных подходов:

· свопинг - образы процессов выгружаются на диск и возвращаются в оперативную память целиком;

· виртуальнаяпамять - между оперативной памятью и диском перемещаются части (сегменты, страницы) образов процессов.

Свопинг – частный случай виртуализации. Это наиболее простой способ совместного использования оперативной памяти и диска.

Недостаток – избыточность. Когда ОС решает активизировать процесс, для его выполнения, часто не требуется загружать в оперативную память все его сегменты полностью. Аналогично при освобождении памяти для загрузки нового процесса очень часто не требуется выгружать другой процесс на диск целиком. Достаточно выгрузить только часть его образа. Перемещение избыточной информации замедляет работу системы и неэффективно используется оперативная память.

Еще один недостаток . Системы, поддерживающие свопинг не способны загрузить для выполнения процесс, виртуальное адресное пространство которого превышает имеющуюся в наличии свободную память.

В современных ОС свопинг применения не находит.

Ключевой проблемой виртуальной памяти , возникающей в результате многократного изменения местоположения в оперативной памяти образов процессов или их частей, является преобразование виртуальных адресов в физические .

В настоящее время все множество реализаций виртуальной памяти может быть представлено тремя классами:

· Страничная виртуальная память . Перемещение данных осуществляется страницами - частями виртуального адресного пространства, фиксированного и сравнительно небольшого размера.

· Сегментная виртуальная память перемещение осуществляется сегментами - частями виртуального адресного пространства произвольного размера.

· Сегментно-страничная виртуальная память . Здесь используется двухуровневое деление: виртуальное адресное пространство делится на сегменты, а затем сегменты делятся на страницы. Единицей перемещения здесь является страница.

Для временного хранения сегментов и страниц на диске отводится либо специальная область, либо специальный файл, который носит название страничный файл.

Текущий размер страничного файла является важным параметром ОС, чем он больше, тем больше приложений может одновременно выполнять ОС. Однако, с увеличением страничного файла увеличивается время на перекачку информации и общая полезная производительность системы уменьшается.

Размер страничного файла в современных ОС является настраиваемым параметром.


Необходимым условием для того, чтобы программа могла выполняться, является ее нахождение в оперативной памяти. Только в этом случае процессор может извлекать команды из памяти и интерпретировать их, выполняя заданные действия. Объем оперативной памяти, который имеется в компьютере, существенно сказывается на характере протекания вычислительного процесса. Он ограничивает число одновременно выполняющихся программ и размеры их виртуальных адресных пространств. В некоторых случаях, когда все задачи мультипрограммной смеси являются вычислительными (то есть выполняют относительно мало операций ввода-вывода, разгружающих центральный процессор), для хорошей загрузки процессора может оказаться достаточным всего 3-5 задач. Однако если вычислительная система загружена выполнением интерактивных задач, то для эффективного использования процессора может потребоваться уже несколько десятков, а то и сотен задач. Эти рассуждения хорошо иллюстрирует рисунок 25, на котором показан график зависимости коэффициента загрузки процессора от числа одновременно выполняемых процессов и доли времени, проводимого этими процессами в состоянии ожидания ввода-вывода.

Рис. 25. Зависимость загрузки процессора от числа задач и интенсивности ввода-вывода

Большое количество задач, необходимое для высокой загрузки процессора, требует большого объема оперативной памяти. В условиях, когда для обеспечения приемлемого уровня мультипрограммирования имеющейся оперативной памяти недостаточно, был предложен метод организации вычислительного процесса, при котором образы некоторых процессов целиком или частично временно выгружаются на диск.

В мультипрограммном режиме помимо активного процесса, то есть процесса, коды которого в настоящий момент интерпретируются процессором, имеются приостановленные процессы, находящиеся в ожидании завершения ввода-вывода или освобождения ресурсов, а также процессы в состоянии готовности, стоящие в очереди к процессору. Образы таких неактивных процессов могут быть временно, до следующего цикла активности, выгружены на диск. Несмотря на то что коды и данные процесса отсутствуют в оперативной памяти, ОС «знает» о его существовании и в полной мере учитывает это при распределении процессорного времени и других системных ресурсов. К моменту, когда подходит очередь выполнения выгруженного процесса, его образ возвращается с диска в оперативную память. Если при этом обнаруживается, что свободного места в оперативной памяти не хватает, то на диск выгружается другой процесс.

Такая подмена (виртуализация) оперативной памяти дисковой памятью позволяет повысить уровень мультипрограммирования - объем оперативной памяти компьютера теперь не столь жестко ограничивает количество одновременно выполняемых процессов, поскольку суммарный объем памяти, занимаемой образами этих процессов, может существенно превосходить имеющийся объем оперативной памяти. Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. В данном случае в распоряжение прикладного программиста предоставляется виртуальная оперативная память, размер которой намного превосходит всю имеющуюся в системе реальную оперативную память. Пользователь пишет программу, а транслятор, используя виртуальные адреса, переводит ее в машинные коды так, как будто в распоряжении программы имеется однородная оперативная память большого объема. В действительности же все коды и данные, используемые программой, хранятся на дисках и только при необходимости загружаются в реальную оперативную память. Понятно, однако, что работа такой «оперативной памяти» происходит значительно медленнее.

Виртуализация оперативной памяти осуществляется совокупностью программных модулей ОС и аппаратных схем процессора и включает решение следующих задач:

Размещение данных в запоминающих устройствах разного типа, например часть кодов программы - в оперативной памяти, а часть - на диске;

Выбор образов процессов или их частей для перемещения из оперативной памяти на диск и обратно;

Перемещение по мере необходимости данных между памятью и диском; Q преобразование виртуальных адресов в физические.

Очень важно то, что все действия по организации совместного использования диска и оперативной памяти (выделение места для перемещаемых фрагментов, настройка адресов, выбор кандидатов на загрузку и выгрузку) осуществляются операционной системой и аппаратурой процессора автоматически, без участия программиста, и никак не сказываются на логике работы приложений.

Виртуализация памяти может быть осуществлена на основе двух различных подходов:

Свопинг (swapping) - образы процессов выгружаются на диск и возвращаются в оперативную память целиком;

Виртуальная память (virtual memory) - между оперативной памятью и диском перемещаются части (сегменты, страницы и т. п.) образов процессов.

Свопинг представляет собой частный случай виртуальной памяти и, следовательно, более простой в реализации способ совместного использования оперативной памяти и диска. Однако подкачке свойственна избыточность: когда ОС решает активизировать процесс, для его выполнения, как правило, не требуется загружать в оперативную память все его сегменты полностью - достаточно загрузить небольшую часть кодового сегмента с подлежащей выполнению инструкцией и частью сегментов Данных, с которыми работает эта инструкция, а также отвести место под сегмент стека. Аналогично при освобождении памяти для загрузки нового процесса очень часто вовсе не требуется выгружать другой процесс на диск целиком, достаточно вытеснить на диск только часть его образа. Перемещение избыточной информации замедляет работу системы, а также приводит к неэффективному использованию памяти. Кроме того, системы, поддерживающие свопинг, имеют еще один очень существенный недостаток: они не способны загрузить для выполнения процесс, виртуальное адресное пространство которого превышает имеющуюся в наличии свободную память.

Именно из-за указанных недостатков свопинг как основной механизм управления памятью почти не используется в современных ОС. На смену ему пришел более совершенный механизм виртуальной памяти , который, как уже было сказано, заключается в том, что при нехватке места в оперативной памяти на диск выгружаются только части образов процессов.

Ключевой проблемой виртуальной памяти, возникающей в результате многократного изменения местоположения в оперативной памяти образов процессов или их частей, является преобразование виртуальных адресов в физические. Решение этой проблемы, в свою очередь, зависит от того, какой способ структуризации виртуального адресного пространства принят в данной системе управления памятью. В настоящее время все множество реализаций виртуальной памяти может быть представлено тремя классами.

Сегментная виртуальная память предусматривает перемещение данных сегментами - частями виртуального адресного пространства произвольного размера, полученными с учетом смыслового значения данных,

Страничная виртуальная память организует перемещение данных между памятью и диском страницами - частями виртуального адресного пространства, фиксированного и сравнительно небольшого размера.

Сегментно-страничная виртуальная память использует двухуровневое деление: виртуальное адресное пространство делится на сегменты, а затем сегменты делятся на страницы. Единицей перемещения данных здесь является страница. Этот способ управления памятью объединяет в себе элементы обоих предыдущих подходов.

Для временного хранения сегментов и страниц на диске отводится либо специальная область, либо специальный файл, которые во многих ОС по традиции продолжают называть областью, или файлом свопинга, хотя перемещение информации между оперативной памятью и диском осуществляется уже не в форме полного замещения одного процесса другим, а частями. Другое популярное название этой области - страничный файл (page file, или paging file). Текущий размер страничного файла является важным параметром, оказывающим влияние на возможности операционной системы: чем больше страничный файл, тем больше приложений может одновременно выполнять ОС (при фиксированном размере оперативной памяти). Однако необходимо понимать, что увеличение числа одновременно работающих приложений за счет увеличения размера страничного файла замедляет их работу, так как значительная часть времени при этом тратится на перекачку кодов и данных из оперативной памяти на диск и обратно. Размер страничного файла в современных ОС является настраиваемым параметром, который выбирается администратором системы для достижения компромисса между уровнем мультипрограммирования и быстродействием системы.

Класснуть

Свопинг является наиболее черным из всех возможных способов поисковой оптимизации. Этот способ заключается в замене содержимого страницы, которую уже проиндексировал поисковик. По сути, свопинг - это обман пользователей. Ведь человек, совершающий переход по ссылке, которая находится в одной из первых строк поисковой выдачи, переходит на страницу, контент которой совершенно не соответствует ожидаемому.

Цели свопинга

Свопингом занимаются черные оптимизаторы. Они извлекают прибыль, продавая ссылочную массу со страницы. Для наглядности приведем пример. Допустим, оптимизатор достаточно успешно провел SEO-кампанию. Результатом стало продвижение сайта на вторую строчку выдачи по словосочетанию "обучение копирайтингу". Вторая позиция в поисковой выдаче дает сайту превосходный трафик, заодно принося оптимизатору прочие дивиденды. Однако оптимизатор вовсе не собирается никого обучать копирайтингу. Он целенаправленно раскручивал сайт по фразе, пользующейся огромной популярностью. Его целью является попадание в ТОП поисковой системы.

Дальше происходит вот что. Содержимое сайта, которое полезно с точки зрения обучения мастерству написания статей для сайтов, удаляется. Его заменяют графической или текстовой информацией, которая абсолютно заспамлена ссылками, не имеющими никакого отношения к копирайтингу. Пользователю такие ссылки совершенно не интересны, однако за их размещение оптимизатор получает приличный доход. Такая схема зарабатывания денег достаточно проста и это лишь один из вариантов зарабатывания на свопинге.

Отрицательные последствия свопинга

Свопинг очень затрудняет для поисковых систем ранжирование сайтов. Описанный выше способ получения прибыли делает сайт, который был успешно проиндексирован, линкопомойкой. При индексировании она отнимает у поисковой системы значительное количество ресурсов. Если большая часть оптимизаторов решить извлекать прибыль таким не слишком сложным способом, поисковая система будет тратить свои ресурсы на индексацию таких линкопомоек. Свопингу необходимо противостоять и делать это нужно эффективно. Иначе поисковые системы просто надорвутся.

Свопинг, кроме прочего, наносит значительный урон имиджу интернета в целом. Обычные пользователи имеют полное право получать с помощью интернета именно ту информацию, которую запрашивали. То есть нужную и полезную. Если вы вместо ресурса, где можно скачать книгу, окажетесь на сайте, который к библиотеке или хранилищу не имеет отношения, вам это не понравится и ругать вы будете именно интернет. Кроме этих негативных факторов, свопинг снижает эффективность нахождения пользователями нужной информации. Косвенным образом он отталкивает от интернета десятки тысяч потенциальных клиентов разнообразных коммерческих проектов.

Борьба со свопингом

Учитывая все негативные моменты свопинга, структуры, которые контролируют интернет (особенно поисковые системы, которые страдают больше других) жестко борются с черными оптимизаторами, занимающимися свопингом. Если оптимизатор сайта уличен в свопинге, такой сайт навсегда будет исключен из баз данных поисковиков. Конечно же, это не значит, что владелец сайта не имеет права изменить тематику своего сайта.

С повсеместным распространением компьютеров в русский язык проникло много иностранных словечек, о которых обычный человек знать ничего не знает. Их ранее употребляли только специалисты в той или иной сфере. А массовое использование слов такого плана началось относительно недавно. Одно из них - "свопинг". Это одно из немногочисленных слов, которое может означать кардинально разные операции. Причем принадлежит оно сразу двум сферам деятельности. Поэтому многие люди путают его значение. Стоит сразу отметить, что это слово нужно определять по контексту. Только тогда будет понятно, к какой именно сфере оно относится в данный момент. А теперь рассмотрим основные понятия, связанные с этим словом.

Вам будет интересно:

Что такое свопинг?

Данное слово произошло от английского swapping. Перевод (дословный) выглядит как "обменивать". Это слово в английском языке присутствует уже давно. И там оно является обычным глаголом. И только в русском языке у него совсем другой смысл. Есть несколько вариантов толкования данного слова, и все они относятся к различным сферам деятельности:

  • Свопинг в мире акций. Таким термином брокеры на биржах обозначали быстрый обмен акциями. В настоящее время свопинг тоже присутствует на крупных биржах. На "Форексе" тоже есть такое понятие, но там оно обозначает быструю продажу всех акций.
  • Свопинг в компьютерном мире. В мире ПК и ноутбуков этим термином обзывают процесс освобождения части оперативной памяти и перенесение данных в заранее созданный файл подкачки на жестком диске. Весьма полезная опция для тех, у кого мало оперативной памяти.
Яндекс Браузер